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The use of electroencephalography (EEG) to assess mental workload (MWL) has been the subject of many studies. 
Also, there have been many efforts to achieve task-independent MWL estimation, with the most recent being in the 
field of machine learning (ML). However, the estimation still remains highly dependent on the specific task used 
for ML model training. Furthermore, there is a shortage of research that is focused on developing an estimator that 
would function for multiple different tasks within a specific task domain. The creation of the dataset described in 
this work is a step towards developing task-independent ML estimator within the scope of visual cognition. An 
experiment meant for the ML model training is designed to collect EEG signals for different levels of MWL during 
manual assembly that involves assembly instructions to be visually processed by operators. It includes idle state of 

an operator, as well as two different complexity levels of the visual instructions. EEG data is collected using wireless 
EEG-recording cap that can be easily incorporated in everyday assembly line environments.  
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1.  Introduction 

Mental workload (MWL) assessment is crucial in 

situations where it is important to understand the 

cognitive demands placed on an individual, and 

make necessary adjustments to optimize safety, 

performance, and well-being. This is relevant in a 

variety of fields, such as Human Factors and 

Ergonomics, Transportation, Education and 

Training, Military, etc. MWL estimation is 

particularly significant in safety-critical systems 

(air traffic control, nuclear power plants, 

industrial control systems, etc.) as high mental 

workload can lead to fatigue, stress, lack of 

concentration, thereby causing mistakes, which 

can have severe implications for safety and 

reliability (Chen et al., 2016).  

MWL is typically estimated through a 

combination of self-reports and physiological 

measurements that include EEG, Heart rate 

variability (HRV), Galvanic skin response (GSR), 

Eye tracking, etc. It is important to note that the 

estimation systems, if to be implemented in real-

world workplaces, should not interfere with a 
human work capacity and their well-being. It 



2   Miloš Pušica, Carlo Caiazzo, Marko Djapan, Marija Savković, Maria Chiara Leva 

means that the technology must be convenient for 

everyday use.  

EEG is a tool that directly measures brain activity 

with high temporal and spatial resolution. 

Additionally, with advancements made in 

robustness, reliability, precision and convenience 

of wearable EEG technology, EEG comes on top 

as the most relevant source of information about 

human MWL (Hogervorst et al., 2014).  
Most common methods for EEG processing for 

MWL estimation use signal power in specific 

frequency bands. A widely used spectral power 

metrics are mental workload index (or cognitive 

load index), calculated as a ratio of frontal theta 

and parietal alpha power and engagement index, 

commonly given with the formula 𝛽/(𝛼 + 𝜃) at 

𝐶𝑧 , 𝑃𝑧 , 𝑃3 , 𝑃4 electrode sites, where 𝛼, 𝛽, 𝜃 refere 

to signal powers in the alpha, beta and theta 
bands, respectively (Pope et al., 1995). It was 

shown that these metrics correlate with some 

objective metrics of task difficulty (Smith et al., 

2001; Berka et al., 2007; Wilson, 2002; Kartali et 

al., 2019) and subjective self-assessments (Berka 

et al., 2007). In addition to this, machine learning 

methods like Linear Discriminant Analysis 

(LDA), Support Vector Machines (SVM), Bayes-

based models, etc. (Zhou et al., 2021), as well as 

deep neural networks (Craig et al., 2019), are 

extensively employed. However, ML estimators 

tend to perform well only for the specific task 
used in the training dataset. This means that, if to 

be used in real life, these estimators would have 

to be trained with the data collected from the same 

task for which we want to apply the estimator. 

This is impractical for two reasons. Firstly, the 

data collection for the training is a challenging 

and time demanding job, and it is impossible to 

collect the data for every different task. Secondly, 

the work performed by humans in real life usually 

includes multitasking in some form and task type 

at hand varies throughout time. Hence, it is not 
clear how we would collect and label the data in 

this complex scenario. In some experiments in the 

literature, the estimators were trained for a certain 

task and then tested for a different one, but the 

results for cross-task MWL estimation were not 

satisfactory, even when the results withing the 

same task were very good (Zhang et al., 2018; 

Baldwin, Penaranda, 2012).  

However, some tasks engage the same cognitive 

capacities and are more similar in that sense than 

the others. For example, tasks from the area of 

visual cognition activate comparable cognitive 

processes related to vision and therefore create the 

same kind of MWL. Having this in mind, we 

could expect that an estimator trained for a 

specific task could also perform well on a 

different task that activates the same brain 

processes – in this case visual cognition. 

However, to the best of our knowledge, there has 

not been much research on cross-task MWL 
estimation withing a group of tasks engaging 

similar cognitive processes. 

This paper explains EEG and performance-related 

data collection during manual assembly task, with 

subjects following visual instructions. The 

experiment is aimed at evaluating the impact of 

visual instructions complexity on MWL as 

evaluated by EEG measurements. It also explains 

the motivation behind the experiment design and 

how the data will be used in future studies towards 

developing a task-domain specific MWL 
estimator using ML.  

 

2.  Metrics for Mental Workload Modelling in 

Manual Assembly 

During the process of manual assembly, mental 

and physical state of the operator vary depending 

on the factors such as fatigue, stress, distractions, 

training and experience, but also task complexity at 

hand. To have an insight into, possibly in real-time, 

MWL levels of the operator and model operator 

performance, certain performance metrics should 
be monitored. Assuming that the operator on a 

production line is assembling one item after the 

other, we can identify the following behavioral 

metrics that are also measured in our experiment: 

• Error rate (item assembled correctly/ 

incorrectly) 

• Assembly time (for one item) 

• Self-assessment questionnaire 

• Item complexity  

An error rate indicates whether the assembly was 

performed accurately in accordance with the given 
instructions or if any mistakes were made during 

the process. It is used as a metric in many studies 

assessing MWL (Pankok Jr et al., 2017; Kosch at 

al., 2018; Li et al., 2018). An error made 

assembling an item could mean that either the task 

was too difficult, or the operator had lost the focus, 

meaning that there was a decrease in the MWL 

level. However, if the task difficulty is kept at the 
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constant level, an error rate is a more reliable 

indicator of the MWL level.  

Assembly time is another measure relevant when 

assessing MWL. Higher assembly time could mean 

that either the task was more difficult, or that the 

operator had lower MWL level. On the other side, 

if the task difficulty is held constant, higher 

assembly time is an indicator that the operator 

invested less mental effort/workload for that time.  
A widely used method for obtaining the operator's 

perspective related to the task experience is 

through the use of questionaries. There are 

different kinds of questionaries for MWL 

assessment: NASA-TLX, SWAT, etc. They can 

give a good insight into information not otherwise 

available through real-time physiological 

measurements. However, filling out questionaries 

require work interruption and hence it is not 

applicable for continuous work settings.  

Objectively quantifying assembly item complexity 
is another way towards monitoring MWL. By 

comparing the complexities of two items, we can 

infer that if an operator successfully assembles 

both, they likely put in more effort to assemble the 

more complex item, indicating a higher MWL level 

during that task. Many experiments designed for 

assessing varying MWL levels have employed 

multiple complexity levels of a certain task 

(Pankok Jr et al., 2017; Van Acker et al. 2020). The 

selection of the task type used depends on the 

specific cognitive demands that we want to 
evaluate, e.g. memory tasks, attention tasks, 

problem-solving tasks, etc.  

EEG is considered the most relevant physiological 

measurement for continuous and real-time MWL 

tracking. Metrics derived from EEG spectral power 

bands are shown to correlate with the above 

mentioned MWL metrics. Additionally, EEG is a 

tool that can be conveniently applied in diverse 

work environments. Typical metrics used include 

mental workload index and engagement index. 

Moreover, a study conducted by Pope et al., 1995 

showed that by modifying task demands 
according to EEG-related indices can lead to the 

increase in productivity. Although the current 

metrics are not responsive to the changes in MWL 

levels that occur frequently over time, this 

suggests that enhancing EEG-related metrics (e.g. 

with machine learning) can optimize work 

environments and increase productivity in various 

types of workplaces. 

 

3.  Experiment  

The purpose of the experiment was to create a 

dataset that could be used to evaluate human 

mental workload in the domain of visual 

cognition during manual assembly task as 

measured by EEG. The idea of the design was to 

impose variable levels of MWL by changing 

assembly items complexities. In the following 

text, we provide an overview of the experimental 

task and its underlying motivation, as well as a 

step-by-step description of the experiment 

procedure. 

 

3.1. Task paradigm 

The goal of the task was to induce different levels 

of MWL specifically related to visual cognition. 

Also, the task was meant to simulate manual 

assembly line workplace. To put together these 

design goals, the assembly instructions were 

created to be visually engaging and of distinct 

complexities and hence require different levels of 

mental effort to be completed. A subject was 

given a plexiglass plate with 20 empty holes with 

switches and asked to connect the holes with 

wires and toggle the switches according to the 

visual instructions given on the screen. Basically, 

participants were asked to assemble a scheme in 

the same way as it was shown in a picture. As 

mentioned before, the schemes were of varying 

complexities. Namely, there were two difficulty 

types. Easier type schemes were given as shown 

in Fig. 1 and they were easy to comprehend. It was 

simple to see which pairs of holes should be 

connected with wires. On the other side, harder 

type schemes were designed to be more 

challenging to grasp. They were presented as 

photos of assembled items taken from non-ideal 

angles, with wires tangled up (Fig. 2). 

Additionally, photos were sometimes rotated to 

add to the complexity of the task. During the 

experiment, schemes were presented sequentially 

on the screen in front of a subject. Also, every 

scheme had a time limit for its completion: for 

easier schemes it was given 60 seconds and for 

harder schemes it was given 90 seconds of 
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assembly time. If the subject would not complete 

a scheme before the time lapsed, he would leave 

the current scheme and the corresponding 

plexiglass plate, take another empty plate and 

move on with the next scheme appearing on the 

screen. Otherwise, if the subject completed the 

scheme in less time than given, he would move on 

to the next one by clicking on the screen. More 

time was given for harder schemes as it was 

anticipated that they would be more demanding. 

 

 
Fig. 1. Low complexity instruction type 

 

 

Fig. 2. High complexity instruction type 

 

3.2. Experimental paradigm 

The experiment was conducted in a controlled 

environment, in a modular and adaptive 

laboratory set-up of the industrial assembly 

workstation described in Savković et al. 2022. A 

total of 32 participants were recorded. Every 

participant was engaged with the task for up to 

three hours - since the time available per scheme 

was upper-limited and the next scheme would 

automatically appear on the screen after the time 

for the current scheme elapsed, total session time 

was consequently upper-limited, too. The task 

was divided into two equal-length sessions to 

allow for a ten min. break between them. During 

the break subjects were free to stand up, walk 

around, and come back for the second session. 

Every subject has been given a training time to get 

familiar with the task. Before the task started, 

baseline measurement was taken for 5 min. while 

a subject was relaxing. The task consisted of a 

total of 150 schemes appearing sequentially – 90 

easy and 60 hard schemes. Since the time limits 

for easy and hard schemes were set at 60 and 90 

seconds respectively, this resulted in equal 

maximum time spent on the two scheme types. No 

scheme was repeated throughout the task. Plates 

stack was placed on the right side of the subject, 

and wires pile was located in front, to add to the 

ergonomic design of the laboratory work station. 

During the experiment, the subject was seated in 

a height-adjustable industrial work chair. A 

touchscreen screen was placed in front of the 

subject with visual instructions shown one at a 

time as shown in Fig. 3. 

 

 
Fig. 3. A subject during the task 

 

Additionally, there was an assistant present 

during the experiment, who would collect and 

remove the plates that the subject would place on 

the left. Also, the assistant would note down for 

each item whether it was assembled completely or 

not. For the whole duration of the experiment, the 

subjects were recorded using wireless EEG cap 

and frontal and side camera.  
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3.3. Equipment 

 

To record the brain's activity while performing the 

task, a gel-based wireless EEG device 

(mBrainTrain LLC, Belgrade, Serbia) with 24 

EEG channels and three accelerometer channels 

and a sampling rate of 250Hz is employed. The 

electrodes are integrated into a cap that conforms 

to the internationally recognized 10-20 system for 

electrode positioning (Homan, 1988).  

The experiment was programmed in the 

experiment control software Presentation, 

developed by Neurobehavioral Systems 

(Neurobehavioral Systems, 2021). 

Two cameras recorded the experiment. One was 

placed on the side and the other was placed in 

front, below the screen. Frontal camera recorded 

head movements.  

Every subject completed a study-specific 

questionaries about their experience with the 

experiment. 

 

4.  Results 

Following the completion of the experiment, each 

participant was requested to fill out a questionnaire, 

which included questions about various aspects of 

their experience with the experiment. In line with 

our hypothesis regarding different difficulty levels 

of the two types of schemes, subjects confirmed that 

assembling high complexity schemes was more 

challenging. Also, they did not report any special 

assembly strategy they could find to use for either 

type of schemes. Further, it was found that 

participants worked on the task as fast as they could 

and mostly did not pay too much attention to the 

timer displayed on the screen, which is a positive 

indication, meaning that they were engaged and 

focused on the task at hand. However, after the time 

limit for a scheme lapsed, they would immediately 

leave the scheme and proceed with another one, as 

instructed by the experiment design. Some 

participants reported occasional difficulties when 

handling switches, as they would sometimes close 

switches they did not intend to.  

After the analysis of ten subjects and looking at the 

times spent on every scheme, it was found that 

36.4% of easy schemes were completed in less than 

60s (time limit for easy schemes), 49.6% of hard 

schemes were completed in less than 90s (time limit 

for hard schemes). However, only 3.6% of hard 

schemes were completed in time under the time limit 

for easy schemes, confirming that participants 

needed more time for harder schemes, as expected 

by the experiment design.  

EEG signals were pre-processed for these ten 

subjects. Pre-processing was done in Matlab 

toolbox, EEGLAB (Delorme, Makeig, 2004). The 

signals were band-pass filtered 1-40 Hz, bad 

channels were interpolated using pop_interp() 

function, pop_clean_rawdata() function is executed 

for artifacts removal and Independent Component 

Analysis (ICA) was employed for further artifacts 

removal. All the steps were done through EEGLAB 

built-in methods. For every subject, MWL index, 

calculated as a ratio of frontal theta and parietal 

alpha EEG power was computed for both types of 

the schemes. Sessions were divided into 2s 

windows with an overlap of 1s and the index was 

calculated for every window. Making an average 

over all the windows belonging to easy schemes 

assembly time, we got one value for easy schemes 

for the subject. The same was done for hard 

schemes. Results can be seen in Fig. 4. 

 

 
Fig. 4. Bar plot for easy vs hard schemes MWL index 

 

It is clear that MWL index, in majority of the 

cases, has bigger value for hard schemes, which 
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supports the hypothesis that this schemes type 

imposes higher cognitive burden on the 

participants. Only for two subjects the index had 

nearly the same value for easy and hard schemes 

type.  

 

5.  Conclusions 

In the EEG study presented, 30 subjects and around 

90h of manual assembly task with two different 

visual instructions complexities was recorded. The 
experiment was conducted in a controlled laboratory 

environment, that simulated a real assembly line 

workplace. The EEG signals were recorded together 

with task-related logs (time instances when each 

instruction scheme appeared on the screen). The 

experiment was recorded using two cameras. 

Additionally, data regarding the completion status of 

each scheme was recorded manually. It is important 

to note that the only difference between lower and 

higher complexity instructions was in the visual 

complexity. This makes the experiment highly 
appropriate for assessing MWL in the domain of 

visual cognition.  

Ten subjects were processed and analyzed. Findings 

regarding the times spent on schemes assembly and 

EEG powerbands-related MWL measure support 

and justify the design of the two difficulty types of 

schemes. 

 

6.  Future Work 

All the data recorded will be analyzed in the follow-

up studies. EEG powerbands-related indexes will be 

extracted and the values for lower and higher 

complexity schemes will be compared. In addition 

to the traditional EEG metrics analysis, a neural 

network will be trained with the experiment data. 

The network will be trained to classify between EEG 

segments from lower and higher complexity 

schemes. To examine whether a neural network 

trained on the dataset for visual MWL estimation 

can be used on other experiments from the domain 

of visual cognition, the network will be evaluated on 

an external, independent dataset. The outcome of 

this assessment would provide us with additional 

insights into the feasibility of estimating mental 

workload across tasks in the area of visual 

perception. 
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