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Recent advances in AI, above all machine and deep learning, have brought about unprecedented possibilities in
automation, prediction and problem solving with impact on operators and their way of working and interacting with
automation on the shop floor. While the expected effects are focusing on increasing the efficiency, flexibility, and
productivity of operations in the industrial and service sector, there is justified scepticism towards its implementation
due also to the challenge of integrating AI into operator’s current way of working and practices in a way that actually
supports also the human in the loop. Therefore, it is now time to consider the user’s side from an employees’ point of
view in order to foster AI in a human-technology relationship. The present paper is exploring the preliminary steps
taken in this direction while trying to identify a problem definition and its suitable solutions for, firstly, improving the
human automation interaction and, secondly, reduce the time variability and improve efficiency in a milling process
for large metal metal components of a wind turbine at a manufacturing facility. To complement this description, a
data analysis of the manufacturing process status is provided. The analysed data sets contain general information
of relevant parameters of the manufacturing system as well as the required inputs from the operators. The purpose
of this report is to establish the basis on which a thorough operational description of the overall man-automation
process is defined and the usefulness of including a better integration for the manual tasks in it. The operational
description of the tasks is a key ingredient to achieve better requirements specifications and how we can enhance
the human performance of the operators by increasing their situational awareness on the shop floor. Moreover this
task mapping can account of a lot of missing information regarding variability of execution time in the process and
to support scheduling of manual activities for the operator to perform while the automated task may not need direct
supervision.

Keywords: Mutual performance monitoring, Collaborative Intelligence, Teamwork, Task analysis, Data analysis,
Requirement specification

1. Introduction

In the last decade, there has been a large growth
of AI systems applied to the manufacturing in-
dustry Li et al. (2017, 2014); Buchmeister et al.
(2019). The vast availability of data, ongoing ad-
vancements in learning algorithms, and a grow-
ing acceptance of machine learning applications
are driving this growth, leading to a fast chang-
ing landscape of human-automation interaction
in Industry 4.0. Pan (2016). in This context a
human-centered strategy is essential to maximise
a smooth transition in those changes and to max-
imise the potential benefits to encourage a good

interaction between operators and AI on the shop
floorWilson and Daugherty (2018).
This changes pushed some organisations to turn

into team-based structures where their employ-
ees are supported by a different systems to cope
with the growing complexity of the operational
environment Katzenbach and Smith (2015). For a
good team-based environment Salas et al. (2005)
proposed a a framework of the key dimensions
of what teamwork is. They define a team as a
group of ”two or more individuals with specified
roles interacting adaptively, interdependently, and
dynamically toward a common and valued goal”
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Salas et al. (2005). In our context this concept
can be extended by incorporating AI agents and
enhanced automation as one of the possible team
member. This concept explains that team lead-
ership, mutual performance monitoring, backup
behaviour, adaptability, and team orientation are
the core components that should be included for
a practical teamwork. In this context we will be
focusing on the mutual performance monitoring.
This component refers to the monitoring of the
fellow team members to maintain an effective
awareness to detect slips, mistakes, or lapses prior
or shortly after occurrence McIntyre and Salas
(1995).
This paper presents an example of a use case

where the basic key elements for this type of
human-AI teaming have to be set in motion and
the methodology used to achieve them Mocan
et al. (2022). This work consists of the following
steps:

• Identification of relevant operator tasks
that are currently not accounted for in the
automatic data monitoring and quality
controls of the process

• Analysis with descriptive statistics of the
available data from the manufacturing
process

• Identification and collection of data re-
garding recurring causes of process de-
viations and downtime in operations
(which may require to account also for
the missing human tasks)

• Requirements specification for data to be
collected and analysed to support a better
automation-human collaboration on the
case study

1.1. Use case description

The current interim lessons learnt came from the
attempted application in a manufacturing com-
pany that produces high-precision machining of
large-sized metal components. The selected pro-
cess is milling of large parts, which are time-
consuming with execution times lasting up to
10 hours. This process intermixes automated and
manual tasks. While the automated tasks can be

precisely timed, the manual tasks have a huge
variability in execution time (multiple hours). The
automation of the milling machine is blind to the
actions of the human and the human is blind to
the execution time of the automated task, as the
machine does not give feedback about upcoming
human interactions. Therefore, automated as well
as manual tasks happen without having a shared
mental model or a communication feedback loop.
The case study is trying to orchestrate the inter-
play between humans and automation and use AI
to optimise their joint outcome.

1.2. Standard process description

In general the milling processes changes with each
article. However, we can try and describe some
basic high level steps as follows:

Part set up and clamping: The metal parts are
placed on the machining tables by the operator
using a ceiling-mounted crane system with the
capacity to carry pieces of several tons of weight.
The parts are secured with a system consisting
of chains, slings, closures, and moorings. Moving
the parts and securing them to the table are the
activities with the most relevant occupational risk
profile within the task. Operators must ensure the
good working order of the systems, (i.e.checking
that slings, moorings, and chains are in good con-
ditions, etc.) Depending on the shape of the metal
part, a specific support stand is chosen to clamp
the parts for machining. The clamping is a manual
activity not mapped that can take several hours
and can occur on one of the two turning tables
while the machining is ongoing on the other (see
Figure 1).
The timing of this task is not currently recorded

anywhere and represents a source of variability
in the overall machining of the product (e.g. the
overall estimated machining time associated with
the Article 1 may be around 4.1 hours but the man-
ual set up of the turning table could require from
1.5 to 3 hours). Support from an AI algorithm to
suggest time to perform this manual task while the
operator is not required to attend the automated
task on the milling machine can constitute a sig-
nificant benefit in terms of reduction of down time
and variability of execution times.
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Fig. 1. Milling machine with the two turning tables.

Computer Numerical Control (CNC) pro-

gram execution: When the part is correctly
clamped, the operator has to choose the correct
program on the CNC interface. Previous to the
execution of the CNC program, the operator must
ensure that the correct tool heads are installed
in a storage area of the milling machine their
automatic use. The conditions of the tools are the
following:

• The milling machine storage area can
stock up to 80 different tools.

• Manual and automatic tools are labelled
with a different series of numbers.

• The probe head is always placed manu-
ally to avoid damage due to its sensitiv-
ity.

• The tasks for the milling machine are
defined in the program, but not the details
of the manual tasks required to assist
in the automatic process (e.g., changing
manual heads).

Part machining: When the correct CNC pro-
gram has been started, the milling or machining
of the part starts. However, this automatic process
needs sporadic operator intervention. The descrip-
tion of the general machining steps are as follows:

• Probing:
– The operator has to mount a touch
probe.

– The probe is self-calibrated by the
machine using a reference. If there
is any problem with the touch
probe, the machine will raise an

alarm.
– The probe then check if piece is
well located in the table by touch-
ing key reference points on the
piece. If the piece is not properly
placed, operator is notified and has
to correct its position. Furthermore
this process will then detect if the
dimensions of the piece are out of
tolerance (e.g., because of a defec-
tive casting), the machine will stop
and raise an alarm. This would cre-
ate a significant downtime since it
require de-clamping and removing
the defective part. This is why op-
erators takes preventive measures
of the piece when clamping it to
minimise this eventuality.

• Milling:
– After the probing, the operator
re-activates the automatic activity
blocks (it resumes the program ex-
ecution).

– The machine starts milling auto-
matically the extra material from
the piece, it follows the program
also changing the tool heads as re-
quired. In some cases for tools that
can not be changed automatically
the operator may need to intervene

Fine milling: Once the piece has been milled,
the next step is to refine it in order to adjust the
piece to the adequate tolerance values. In this step
the operator will have to assist the process by
manually mounting a special boring head. Then,
the part is milled, measured again, and repeat
this sequence until the tolerance value has been
reached.

Part dismount: Once the CNC program has
finished, the machined part should be ready for
dismounting. Ideally, when one part is finished the
milling machine should be able to move to the
other turning table to start the milling of a new
product. Meanwhile the operator can disassemble
and unload the piece using manual tools and a
overhead crane. This interplay can create down
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time as there is only one operator attending the
milling machine and ideally he/she needs to allo-
cate time prepare the other turning table while the
automatic task not requiring his/her attention are
ongoing. This is where an AI agent to support this
scheduling may be of use.

2. Methodology

2.1. Operational task description

The next step in the methodology required the
mapping of the actual operational tasks carried
out by the operator. This information can then be
used to build a better map of the operational steps
including also the operator tasks so as to design
an interface that allows a communication between
the human and the machine to facilitate the in-
terplay between their joint simultaneous activities
and the one they can each carry out independently.
This will optimise execution time and decrease
the down times in which the machine is waiting
for the operator’s input. A key ingredient here is
knowing the details of what tasks operators need
to perform OHara et al. (1994).
The methodology used to map out the activities

carried out by the operators on the shop floor
consist on the following:

Talk Aloud Protocol (TAP). This is a data
collection approach in which participants are re-
quested to speak aloud while performing a certain
task, describing what they are thinking as they
complete the exercise. The subject is instructed
to speak aloud whatever thoughts come to mind,
offering a simultaneous account of thoughts while
avoiding interpretation or explanation of what is
being done. The TAP uses verbal reporting and
raises thoughts into consciousness to collect infor-
mation about an individual’s cognitive processes
Ericsson and Simon (1984). Think aloud ver-
bal protocols provide detailed information about
reasoning during a problem-solving or decision-
making job. This technique has been applied in a
broad range of situation, e.g. training purposes Vie
and Arntzen (2017).

Eye-tracker. In short, an eye-tracker device
consists on a video recording instrument focused
in the eye movements of the wearer (observer).
The observer’s gaze pattern gives useful informa-

tion based on where and what the observer is look-
ing at when studying eye movements Duchowski
and Duchowski (2017). The information collected
with such a device can range from attention, fa-
tigue level, perception, consciousness, and cogni-
tive processes Yarbus (2013). Most studies have
employed objective approaches to study the rela-
tionship between oculomotor behaviour and cog-
nitive processes throughout diverse visual tasks.
The popularity of the eye-tracker studies has
grown with the improvement of their technol-
ogy. Mobile eye-trackers provide freedom of head
movement as well as commuting in the work area
and other properties of natural vision, which re-
sults in a superior approach for researching visual
attention and perception in a real-world setting
Kiefer et al. (2012). Even some models offer the
possibility of recording audio and video at the
same time. This feature becomes handy when
combining it with the TAP.

Semi structured interview and subjective

workload assessment. As apt of the data col-
lection semi structured interview were used to
gather information about the current working
practices and desires of the operators in relation to
what they would like to change. Concurrently the
NASA task load index (NASA TLX) was also de-
ployed as a tool for measuring the subjective men-
tal workload (MWL) experienced by the operators
involved Hart and Staveland (1988). The tool can
be useful to offer a comparable assessment of the
MWL of a participant while they are performing
the task as it is now, and as it will be in the fu-
ture after being modified by the intervention. The
operators therefore allowed us to observe them in
action using a talk-aloud protocol with the support
of a wearable eye-tracker device incorporating an
audio recording tool, and were later also available
to address some of our questions and complete a
NASA TLX questionnaire that we currently do not
report as it will be used only to compare the ”as
is situation” with the possible ”to be” scenario.
The protocol was revised by the project ethics
committee.



3271Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022)

2.2. Manufacturing process data analysis
(descriptive statistics)

This quantitative data analysis of the manufac-
turing process is aimed to complement the infor-
mation collected from the operator tasks to point
possible deviations in the process times.

Data sources and objectives: As a part of the
manufacturing system, information about the po-
sitions, temperatures, and other multiple sensors
from the machine is stored with a sampling fre-
quency of approximately 1 second and combined
with inputs from the operator, such as working or-
der and article Id, and are subsequently displayed
in a graphic interface. The graphic interface is
accessible from the company intranet. However
when the machine is shown to be stopped in the
Cycle Time and Execution State, the reasons for
the stop are not recorded or specified. This also
represents an opportunity for improvement as dis-
cussed later in this document.
The manufacturer provided two data sets, the

fist one including the operator and reduced ma-
chine data between 2022-01-23 and 2022-01-29,
and the second one including the data between
2022-02-18 and 2022-03-11. They can be com-
bined, since there is no significant difference in
the manufacturing process or in the features pre-
sented.
The analysis performed was aimed at describ-

ing the data regarding operator inputs joined with
some of the machine data. However, since a man-
ufacturing process for a product may require up
to 8 hours, the data set provided did not contain a
significant amount of complete cycles.
The analysis only focuses on two types of prod-

ucts, which are the one most frequently produced
by the manufacturer at the moment, and consists
on descriptive statistics with graphical analysis to
set the base for a future resolution of the schedul-
ing problem. The relevant features used in the data
analysis were:

• Date of the event
• ExecutionState: 0 (Ready), 1 (Paused), 2
(Stopped) and 3 (Working).

• ArticleID: (input of the operator) The
type of article that is being manufactured

or, if the machine is not working, the task
that is being made (such as maintenance,
meetings, etc.)

• WorkingOrder: (input of the operator)
The identifier (number) of the product
that is being manufactured (0, if no piece
is being worked at the time).

• ProgramName: The CNC programs used
by the machine. Art1 Prog1 and
Art1 Prog2 for article 1, and Art2 Prog1
for article 2.

• ToolNumber: The number of the tool
head that is being used by the machine.

Data processing method: The Manufacturing
data was processed using Python programming
language and covered the following steps:

(1) Concatenation of the different files in format
.csv to reconstruct the combined dataset.

(2) Substitution and removal of null values. For
the instances of ProgramName and ArticleId
that are missing a value, they are replaced
with ”unknown”. For the instances of Opera-
tionMode, ExecutionState andWorkingOrder,
the values are replaced with 0, 2, and 0 respec-
tively. The remaining rows with null values
are removed.

(3) Conversion of the types of the columns (Date,
WorkingId) and values mapping (Execution-
State.

(4) Column addition: ToolChange
variable, which describes whether the change
for a specific tool head is done manually or
automatically by the machine.

(5) Data anonymization: The original article
names are changed to Article 1 and Article
2, and the original names of the programs are
also changed. Article Id and Program Names
that do not involve the pieces manufactured
and are not unknown, are all named as others.

(6) Data filter. Only data from 10 p.m.on Sunday
to 10 p.m. on Friday has been kept.

(7) Graphs creation: time series visualisation and
mean and std computation and display for the
duration of the process and for the chosen fea-
tures, differentiating between the Execution
States. The graphs obtained with the analysis
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are shown in Section 3.3.

3. Results and Discussions

3.1. Operational task sequence: the
missing ingredient

A summary of a task sequence (the finishing pro-
cess for one of the pieces) is displayed in figure
2. Each of the tasks enumerated should have addi-
tional detail to describe the operational sequence
of the tasks that the operator executes and, there-
fore, know the implication of the operators in each
stage of the manufacturing process.
The task sequence was changed to provide a

deeper level of detail for the operators task de-
scriptions. This, alongside the eye tracking analy-
sis (3.2) and an analysis of the manufacturing pro-
cess data (3.2) allows a better understanding of the
operators roles and contributions in every stage of
the process and help to identify the stages where
a better interplay between automation and the hu-
man element can be made, such as asking for extra
operator input regarding why the machining may
have stopped and/or providing the operator with a
view of what phase the the automatic process is at
and when is his/her intervention needed next.

3.2. Eye-tracking analysis

As described in Section 2.1, an eye-tracker sys-
tem can provide useful information on what the
observer is looking at when studying eye move-
ments. This information can be analysed to gener-
ate an operational description of the tasks.
In Section 3.1, the first task listed in the se-

quence is Coupling the boring head, and it is a
manual process. The event starts when the opera-
tor uses the crane remote control to load the bor-
ing head (since it is quite heavy) and ends when
the employee position the head near the milling
machine where it needs to be attached. Once the
operator attaches the boring head to the milling
machine the finishing task can start.
The data in Table 1 provides information about

the behaviour of the operator while the employee
spend most of the time looking at the milling
machine (43719 ms/12 visits), followed by the
boring head (6872 ms/8 visits). The employer
switches his attention mainly between the milling

machine and the boring head. Occasionally he also
focus on the crane remote control and the milling
machine control panel.

Milling initiation. Once the operator has man-
ually adjusted the boring head settings, he enters
the milling machine cabin (start of the activity),
inputs the proper values and starts the milling
process (end of the activity).
According to Table 2, the employee started

the activity using the control panel and then the
main control screen for introducing the proper
values for refining the milling of the piece. We
can see how he spent most of the time switch-
ing his attention from the main control screen
(10038 ms/4 visits) to the main control panel
(6492 ms/10 visits), and to the door window of
the milling cabin (13444ms/4 visits), in order to
monitor the execution of the milling process.

3.3. Data process results for the
manufacturing data

For this section, some examples of the graphs that
can be obtained from the data are included. Plots
of one of the articles, and one of the programs of
the first article are the ones displayed, though the
study could be extended to all the programs of the
two different articles.
Figure 5 visualise the time series of the first

dataset (from 2022-01-23 00:00 to 2022-01-29
23:58), that places all the activities (as different
events) and pieces on a timeline. It shows how the
articles are alternated and how the schedule of the
different pieces occurs. It also reveals how impor-
tant it is to remove the ”0” working orders: for
example, between the 2022-01-25 and the 2022-
01-26, there is some downtime. it is recognisable
because is a time that does not correspond to any
article or activity, but it still has a program and a
tool associated to it. This is normally considered
an uncommon event registered by the workers.
Erasing 0 working orders also allows to remove
the downtime at the start and at the end of the
week, when the factory is not open (e.g., on the
last hours of the 2022-01-28, where the workers
finish the last piece before the weekend and do not
initiate the process of another).
Figure 6 shows the average duration of the
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Fig. 2. Graphic scheduling of part finishing process.

Table 1. AOI data for operator when installing boring head.

AOI Total du-
ration of visit
(msec)

Average du-
ration of visit
(msec)

Number of
visits

Time to first
visit (msec)

Average
pupil size
(mm)

Boring head 6872 859 8 1102 5.825
Crane remote control 2304 461 5 7033 5.897
Milling machine 43719 3643 12 220 6.014
Milling machine re-
mote control

4067 2034 2 55460 6.085

Fig. 3. Heat map reflecting more relevant areas for op-
erator when installing boring head in milling machine.

processes for the different articles, if ”0” working
order is excluded. The variability shown in the
others article ID shows that the duration of these
articles is very variable. They are associated to
either other pieces less commonly produced by the
manufacturer, or other activities performed by the
workers, e.g., preventive maintenance.

Fig. 4. Heat map showing relevant areas for operator
when initiating milling process.

Figure 7 shows the average duration of the
programs when ArticleId is Article 1. Art1 Prog1
and Art1 Prog2 are designed for this article. It
reports some programs that are not designed for
the corresponding articles (e.g., Art2 prog1 for
Article 1). This could mean that there is a delay
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Table 2. AOI data for operator initiating milling process.

AOI Total du-
ration of visit
(msec)

Average du-
ration of visit
(msec)

Number of
visits

Time to first
visit (msec)

Average
pupil size
(mm)

Door window 13444 3361 4 10399 4.76855

Main control screen 10038 1115 9 1403 3.80863
Main control panel 6492 649 10 0 4.31454

Fig. 5. Machine multivariate time series visualisation.

Fig. 6. Article ID by Execution State (excluding
working orders equal to 0).

between the time the worker inputs the Article Id
and the time when the new programs are being
executed. This delay cannot be avoided, but could
be corrected in the data afterwards.
The graph also illustrates a noticeable variabil-

Fig. 7. Program Name for Article 1 by Execution
State (excluding working orders equal to 0).

ity of the program length for Article 1, which is
considerably larger than the delay mentioned be-
fore and is worth studying. Although the working
part of the programs should be the same (once
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the machine is active, the programs usually have
a fixed duration), part of that variability could
be explained by the differences between the cast
pieces (they have tolerances and sometimes more
material is to be removed) or the override that the
workers occasionally enforce in the machine to
reduce the milling time.

Fig. 8. Tool Change for Article 1 Program 2 by Exe-
cution State (excluding working orders equal to 0).

Figure 8 shows the average duration of the us-
age of each tool number where ArticleId is Article
1 and ProgramName is the second program for
Article 1, which includes the finishing stage men-
tioned in the above sections. A high variability
can be appreciated in Tool Change None, which
is the value assigned when the machine has no
tool. This item also shows the highest proportion
of 2 STOPPED and 1 READY Execution States,
in which the machine is not working. This could
be useful information for the manufacturer, since
the study of the causes of this variability and
downtime can lead to a reduction of the overall
production time of the pieces. This information
is knowledge possessed by the operators that is
currently not yet collected by the process and
supports the idea of the need of a thorough task
scheduling as shown in section 3.1
Additionally, the intervals of time with the

highest variability are the one associated to in-
stances where the tool heads need to be changed
manually and/or for situations where the machine
has no tool head mounted. These two instances

also contribute the higher proportion of unpro-
ductive time if compared with the tool heads that
are changed automatically. This is also something
worth exploring to find a way to improve and
make the manual changes more consistent.

4. Conclusions

This work presents the description of the general
tasks of a manufacturing company in charge of
machining metal parts. Such a description cover
some of the basic element needed to lay down the
basis for better requirements specification to mod-
ify the current interplay between the automation
and the human operator assigned to the process.
The analysis only focused in two of the articles
produced, however the steps followed and the
findings could be generalised to other products
too.
It must be noted that the data has been la-

belled to describe when the operator needs to
be directly supervising the milling machine and
not only when he physically has a task to per-
form (e.g. change a tool head). The company
currently collect specific times only for the task
performed by automation, while the manual tasks
and activities are unaccounted for. this creates a
gap in the shared model of the interplay between
the machine and the human. A thorough opera-
tional description of the manual tasks, as the one
provided in this report, would benefit the time
calculation of such tasks. The authors envision a
potential for AI collaboration. AI algorithm in fact
can supporting better communication between the
Human agent and the Automation by providing
info about the times when the operator does not
need to directly supervised the milling machine
and suggest a scheduling for other simultaneous
activities that the operator can perform such as
preparing the other turning table for the second
piece and/or be able to perform some maintenance
on the tools. To achieve this possibilities we need
to focus on mapping and collect data about the
human tasks currently unaccounted for. If they
were to be reported and represented similarly to
what is already done on the automation side, and
if the operator were willing to support the missing
information regarding the causes of stoppage and
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downtime, it will lead towards a better teamwork
between the automatic agent and the human agent
providing what Salas et al.Salas et al. (2005) refer
to as necessary teamwork coordinating mecha-
nisms: a two way communication and a shared
mental picture of the situation (e.g. the operator
will be able to see when is needed and when is
not and be given suggestion for other tasks he/she
may need to attend to, while the automation will
be able to monitor what task the human agent
is attending to, how long they take and be given
information regarding causes of downtime when
it occurs).
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