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Conventional process controllers (such as proportional integral derivative controllers and model predictive con-
trollers) are simple and effective once they have been calibrated for a given system. However, it is difficult and
costly to re-tune these controllers if the system deviates from its normal conditions and starts to deteriorate.
Recently, reinforcement learning has shown significant improvement in learning process control policies through
direct interaction with a system, without the need of a process model or the system characteristics as it learns the
optimal control by interacting with the environment directly. However, developing such a black-box system is a
challenge when the system is complex and it may not be possible to capture the complete dynamics of the system
just with a single reinforcement learning agent. Therefore, in this paper, we propose a simple architecture that does
not replace the conventional proportional integral derivative controllers but instead augments the control input to the
system with a reinforcement learning agent that adds a correction factor to the output provided by such controllers
so as to maintain optimal process control even when the system is not operating under its normal condition.
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1. Introduction

Industrial processes control has become au-
tonomous with the advent of sophisticated control
strategies such as Proportional Integral Derivative
(PID) or Model Predictive Control (MPC) Efheij
et al. (2019), based on the look-ahead optimiza-
tion. However, one of the major disadvantages
of such control laws is that their implementation
requires an explicit understanding of the system
dynamics and sometimes also knowledge of the
environment. Furthermore, once the controller is
tuned to the specific model or set-points of the sys-
tem it only provides the optimal control under set
system specificities. If the system deteriorates or
the environmental conditions and set-points drift
from the normal conditions, the controller starts
deviating and provides sub-optimal control strate-
gies and sometimes fails to control the process at
all. In these cases, it becomes necessary to opti-
mize the controller performance by re-tuning the

controller parameters and system re-identification,
tasks which lead to process shutdowns and mas-
sive time consumption Spielberg et al. (2019).

Recent developments in model-free Deep Re-
inforcement Learning (DRL) have demonstrated
the feasibility of replacing such controllers with
fully autonomous controllers that interact with the
environment in an online setting and create their
own understanding of the model of the environ-
ment, therefore eliminating the need for system re-
identification Spielberg et al. (2019). Reinforce-
ment Learning (RL) is a branch of machine learn-
ing that learns through interaction with the envi-
ronment without having any prior knowledge of
the dataset Sutton and Barto (2018). The majority
of work on DRL for process control replaces the
conventional controllers entirely with the DRL
controller as suggested in Spielberg et al. (2019);
Nian et al. (2020); McClement et al. (2021); Con-
radie and Aldrich (2001); Mageli (2019). Such an
approach is well suited for simpler control prob-
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lems. However, developing a controller for sophis-
ticated control scenarios generally requires either
proper domain knowledge or a very complex DRL
algorithm structure that is not easily generalizable.

Process control is a critical optimization prob-
lem that needs to consider optimizing every time-
step to be able to run the process smoothly be-
cause if it fails at any instant then the process trips
(shutdown) and this may lead to catastrophic fail-
ures. DRL was developed to solve an optimization
problem without considering the path that optimal
policy takes to achieve the maximum cumulative
reward. Therefore, it is not necessarily appropriate
to replace conventional control with DRL as the
trajectory a process follows can have a major im-
pact on the process control. Hence, we argue that
it is best to use DRL in a hybrid setting with the
conventional controllers, as also recommended by
Shin et al. (2019).

Therefore, we propose a novel yet simple
methodology that merges the conventional con-
troller with a DRL-based correction factor applied
to each controller output. The corrected signal is
then fed as an input to the plant. This correction
factor aids the adjustment of the control in the
case of system disturbances or when the controller
requires re-tuning. DRL interacts with the process
in real-time and generates an additional control
signal that rectifies the output provided by the con-
ventional controller (PID/ MPC) and results in the
optimal control with reduced alarming scenarios
and reduced operator burden.

2. Related Literature

An adaptive and self-learning model-free DRL
controller is proposed by Spielberg et al. (2019).
The proposed controller learns while interacting
with the process in real-time, hence it is a data-
based approach. The proposed system uses an
actor-critic Konda and Tsitsiklis (1999) architec-
ture for the DRL agent based on the Deep Policy
Gradient (DPG) Lillicrap et al. (2015). In order to
make the DRL agent completely aware of the sys-
tem dynamics, the state is defined as the current
state as well as the previous states, and the current
control action taken by the RL agent as well as
the previous control actions, up to a predefined

number of the previous time steps. In addition,
the state also incorporates the current deviation
from the system-defined set-points. The approach
is validated on the set-point tracking problem in
control theory where the controller has to reach
the predefined set-point with minimal oscillations
and time while reducing the error caused by the
deviation of the system state from the defined set-
points. The performance of the DRL controller is
evaluated through simulation experiments with a
number of use cases, including (i) a paper ma-
chine, (ii) a distillation column, (iii) and a heating,
ventilation, and air conditioning (HVAC) system.

A multi-criteria decision-making control pro-
cess using DRL has been implemented by He et al.
(2021) and has been evaluated using the case study
of a textile manufacturing process. Process opti-
mization for the textile industry includes various
parameters to be tuned simultaneously, and DRL
is well suited for such multi-objective optimiza-
tion.

Panzer and Bender (2021) provide a literature
review on the use of DRL in production systems.
All of the work cited in this review paper re-
places the conventional control methods and uti-
lizes DRL for process optimization. The research
reviewed was applied across a number of case
studies, such as the liquid level control of multiple
connected tanks, single- and multi-input and -
output processes, and chemical-mechanical pol-
ishing Noel and Pandian (2014); Spielberg et al.
(2017); Yu and Guo (2020). In all cases, the DRL-
based controller achieves optimal performance
from the conventional control strategies with re-
duced maintenance and cost along with increased
process stability.

Mageli (2019) used a DRL agent to replace
regular controllers in a case study of tank level
regulation. The DRL controller was compared
with a Proportional controller, a type of PID
controller where only the first component Propor-
tional (P) is used. The results showed that the P-
controller performed better with stable controller
output changes, whereas DRL with larger output
changes resulted in system oscillation. The re-
search indicates the complexity of the DRL con-
troller does not outperform a simple well-tuned
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controller. However, with the increased complex-
ity of the system nonlinearities and the ability to
incorporate system deviation from the standard
operating conditions for which the controller was
tuned, DRL has great potential.

A generalizable approach to process control
using DRL is used by McClement et al. (2021).
The approach can be integrated within the existing
control structures and be used to tune the PID or
MPC controllers or can be used as an independent
controller without the aid of any other existing
control. For example, DRL is used as a set-point
decision-maker Hernández-del Olmo et al. (2018)
in a wastewater treatment plant, where the sug-
gested set-points are then controlled using a PID
controller.

Finally, Shin et al. (2019) present a brief in-
troduction to RL and its use in process control
followed by its limitations and comparison with
conventional controllers. They argue that model-
based/mathematical programming-based con-
trollers such as MPC are limited in their ability to
incorporate stochasticity of the environment and
that RL can overcome these issues. Furthemore,
they identify three strategies for implementing RL
in process control: (i) replacing the conventional
control with RL, (ii) hybrid RL and conventional
controller, and (iii) RL to manage the control sys-
tems (PID tuning or MPC gain adjustments). In
this paper, the second method of using a hybrid
model is proposed.

2.1. Literature Gap

Several hybrid structures of MPC with RL were
proposed by Lee and Wong (2010). The first
method is a hierarchical structure where MPC de-
termines the state regions to focus on for RL. The
second includes learning value function for states
in order to capture the uncertainties within the
system model and incorporate them within MPC
formulation. The third approach uses switching
between MPC and RL where the MPC is used
instead of the RL when a new state has been
observed. Another example is the Dual MPC
methodology introduced by Morinelly and Ydstie
(2016), where RL is used to incorporate the pre-
dicted information within the model.

Most of the hybrid DRL-based conventional
controller either uses RL to predict uncertainties
within the environment and then incorporate such
information within the mathematical modeling or
uses RL independently with the conventional con-
trollers with a switching probability. However,
we propose to use DRL alongside the process
controllers and to act as a correcting agent that
feeds in the information of the current state and
action proposed by the conventional control and
outputting a correction factor added to the output
of the conventional control. Such a method can
help correct the control signal during the process
disturbances and abnormalities where the prob-
ability of occurrence of multiple alarms is high
and it can help minimize or mitigate such alarm
scenarios.

3. Proposed Methodology

Our proposed methodology is to add the DRL
agent integrated within the industrial process. The
agent continuously observes the state of the sys-
tem and at every time step provides corrected
signals to be added to the output of the PID/MPC
controller, which is then fed as the control signal
to the plant. We propose two different architec-
tures in terms of the state representative for the RL
as shown in fig. 1 and fig. 2. The first architecture
shown in fig. 1 represents the state as a function of
the industrial process (plant) output concatenated
with the output signal from the PID controller.

The modified architecture as shown in fig. 2
represents the state as the function of output from
the plant, output signal from the PID controller,
deviation of process variables from the setpoint,
and the action proposed by the DRL agent.

Three different reward functions can be used
(i) L1 norm, (ii) L2 norm, and (iii) polar reward
as shown in Spielberg et al. (2019). The first two
reward functions will enable an agent to learn
faster but will likely result in more oscillation in
the control signals than the third. The third reward
function stops penalizing the agent once it sees
that the agent is starting to improve. The objective
function of the agent is to minimize the deviation
from the setpoints during the disturbance phase
where the PID/MPC controller fails to mitigate the
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Fig. 1. Simplified DRL-RA methodology.

Fig. 2. Enriched state modified DRL-RA methodology (ES-DRL-RA).

error and reduce the number of alarms.

4. Future Work

In this paper, we proposed a novel hybrid architec-
ture of DRL-based conventional process control
and its potential applications in the case of alarm
reduction and mitigation to help the operators in
an abnormal situation where handling multiple
alarms simultaneously becomes difficult, which
causes occlude the root cause failure of the sys-
tem. In the future, we will try to use this methodol-
ogy in several real-world case studies with historic
data or with the help of a simulator and compare
the performance of such hybrid architecture over
the conventional control. The presented state and
reward architectures of the simplified and modi-
fied methodology will be compared and evaluated
against the benchmark of an average of the total
number of alarms generated compared to the con-
ventional control.
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